
数学 3 積分の応用の tutorial No.10 名前

30 [パラメータ曲線の回転体] ( 9 の説明とほとんど同じ)
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媒介変数 tによって x= f(t)，y= g(t)と表される曲線 Cがある。
t0 · t· t1 の範囲で，f(t)は単調に増加し，
t0 · t· t1 の範囲で，常に g(t)¸ 0とする。
f(t0) = x0，f(t1) = x1とすると，f(t)は単調増加なので，x0 · x1
このとき，曲線 Cと x軸，2直線 x= x0，x= x1 で囲まれた部分を
x軸のまわりに 1回転してできる立体の体積 Vは，

V=
ア

xを tに置換すると，dx= f0(t)dtであり，積分区間の対応は
x x0 ! x1
t t0 ! t1

なので，

V=
イ

f(t)が単調に減少するときは x0 ¸ x1 となり，上の公式のままでは Vが負になる。この場合，積分区間の
上端と下端を逆にすることで対処すればよい。f(t)が単調でないときは，単調な区間に切って考える。

31 [パラメータ曲線の回転体] 半径 rの円を転がしてできるサイク
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ロイド x= r(µ¡ sinµ)，y= r(1¡ cosµ) (0· µ· 2¼)を考え
る。この曲線と x軸で囲まれた部分を，x軸のまわりに 1回転して
できる立体の体積 Vを求めなさい。 [啓林館 p.238]

32 [一般の直線のまわりの回転体] 図形 Sを一般の直線 lのまわりに回
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転してできる立体の体積 Vを求めるときは，直線 lを新しく t軸とし
て，t軸に垂直な平面で切ったときの断面積を考えればよい。
右の図で，a· t· bにおける回転体の体積は，

V=
ア

もちろん，線分 PHが図形 Sの外部を通ったり，直線 lが図形 Sの内
部を通る場合など，変則的な状況があれば，それなりの対処が必要で
ある。

33 [一般の直線のまわりの回転体] 放物線 C : y = x2 と直線 l : y = xに
l
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よって囲まれた図形を直線 lのまわりに 1回転してできる回転体の体積 V
を求めなさい。 [啓林館 p.239]



数学 3 積分の応用の tutorial No.10 解答

30 [パラメータ曲線の回転体] ( 9 の説明とほとんど同じ)
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媒介変数 tによって x= f(t)，y= g(t)と表される曲線 Cがある。
t0 · t· t1 の範囲で，f(t)は単調に増加し，
t0 · t· t1 の範囲で，常に g(t)¸ 0とする。
f(t0) = x0，f(t1) = x1とすると，f(t)は単調増加なので，x0 · x1
このとき，曲線 Cと x軸，2直線 x= x0，x= x1 で囲まれた部分を
x軸のまわりに 1回転してできる立体の体積 Vは，

V=
Úx1
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xを tに置換すると，dx= f0(t)dtであり，積分区間の対応は
x x0 ! x1
t t0 ! t1

なので，

V=
Út1
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¼Qg(t)i2f0(t)dtイ

f(t)が単調に減少するときは x0 ¸ x1 となり，上の公式のままでは Vが負になる。この場合，積分区間の
上端と下端を逆にすることで対処すればよい。f(t)が単調でないときは，単調な区間に切って考える。

31 [パラメータ曲線の回転体] 半径 rの円を転がしてできるサイク
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ロイド x= r(µ¡ sinµ)，y= r(1¡ cosµ) (0· µ· 2¼)を考え
る。この曲線と x軸で囲まれた部分を，x軸のまわりに 1回転して
できる立体の体積 Vを求めなさい。 [啓林館 p.238]

C V=
Ú2¼r

0
¼y2dx

x= r(µ¡ sinµ) より，dx= r(1¡ cosµ)dµ

積分区間の対応は
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32 [一般の直線のまわりの回転体] 図形 Sを一般の直線 lのまわりに回
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転してできる立体の体積 Vを求めるときは，直線 lを新しく t軸とし
て，t軸に垂直な平面で切ったときの断面積を考えればよい。
右の図で，a· t· bにおける回転体の体積は，
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a
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もちろん，線分 PHが図形 Sの外部を通ったり，直線 lが図形 Sの内
部を通る場合など，変則的な状況があれば，それなりの対処が必要で
ある。

33 [一般の直線のまわりの回転体] 放物線 C : y = x2 と直線 l : y = xに
l
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よって囲まれた図形を直線 lのまわりに 1回転してできる回転体の体積 V
を求めなさい。 [啓林館 p.239]

C 直線 lと放物線 Cの交点のうち，Oではない方を Aとすると，
A(1; 1) であり，OA=

B

2 である。
また，放物線 Cの Oから Aの間の部分に点 P(x; x2) をとり，
Pから直線 lにおろした垂線を PHとすると，
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ここで，OH= t，PH = f(t)とおく。すなわち，t= x+x
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積分区間の対応は
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よって，求める体積 Vは，
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